A Discrete Farkas Lemma

نویسنده

  • Jean B. Lasserre
چکیده

Given A ∈ Zm×n and b ∈ Zm, we consider the issue of existence of a nonnegative integral solution x ∈ Nn to the system of linear equations Ax = b. We provide a discrete and explicit analogue of the celebrated Farkas lemma for linear systems in Rn and prove that checking existence of integral solutions reduces to solving an explicit linear programming problem of fixed dimension, known in advance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Linear Programming and its Application for a Constructive Proof of a Fuzzy Version of Farkas Lemma

The main aim of this paper is to deal with a fuzzy version of Farkas lemma involving trapezoidal fuzzy numbers. In turns to that the fuzzy linear programming and duality theory on these problems can be used to provide a constructive proof for Farkas lemma. Keywords Farkas Lemma, Fuzzy Linear Programming, Duality, Ranking Functions.

متن کامل

A generalization of the Hirschhorn-Farkas-Kra septagonal numbers identity

We provide elementary proofs of the Farkas–Kra septagonal numbers identity and some kth-order generalizations. c © 2001 Elsevier Science B.V. All rights reserved.

متن کامل

Duality and a Farkas lemma for integer programs

We consider the integer program max{c′x |Ax = b, x ∈ Nn}. A formal parallel between linear programming and continuous integration, and discrete summation, shows that a natural duality for integer programs can be derived from the Z-transform and Brion and Vergne’s counting formula. Along the same lines, we also provide a discrete Farkas lemma and show that the existence of a nonnegative integral...

متن کامل

A short proof of the Collapsing Walls Lemma

In this short note we give a simple geometric proof of the Collapsing Walls Lemma given by I. Pak and R. Pinchasi in [1]. Our arguments work in spaces of constant curvature.

متن کامل

Counting in hypergraphs via regularity inheritance

We develop a theory of regularity inheritance in 3-uniform hypergraphs. As a simple consequence we deduce a strengthening of a counting lemma of Frankl and Rödl. We believe that the approach is sufficiently flexible and general to permit extensions of our results in the direction of a hypergraph blow-up lemma.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003